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Solution 3

1. Let f be a function defined on (a,b) and zg € (a,b).

(a) Show that f is Lipschitz continuous at xg if its left and right derivatives exist at .

(b) Construct a function Lipschitz continuous at xg whose one sided derivatives do not
exist.

Solution. (a) Let a = f/ (xo). For e =1 > 0, there exists ¢; such that

flx+2) = f(z)

z

—a| <1,

for 0 < z < 61. It follows that
|f(x+2) = f(@)] < [f(z+2) = f(@) = az| +]az| < (1 + |a])|z] .

Similarly,
[f(z+2) = fl)| < (A +a])lz], z€(=d2,0).
We conclude that |f(z + 2) — f(2)] < (14 0)|z|, =z € (=4,d), 6 =min{d,da}.

(b) The function f(z) = zsind (z # 0) and = 0 at z = 0. It is Lipschitz continuous at
zo = 0 with L = 1 but both one-sided derivatives do not exist.

2. Optional. Let f be a function defined on (a, b] which is integrable on [c, b] for all ¢ € (a,b).
It is called improperly integrable over (a, b] if

b
lim
Tim, / /]

b
lim
c—>a+\/C /
also exists and we define the improper integral of f over (a,b] to be
b b
/ f= lim / f.
a c—at Je

(a) Show that if f is integrable on [a, b], its improper integral also exists and is equal to
it usual integral.

exists. When this happens,

(b) Show that Riemann-Lebesgue Lemma holds for improperly integrable functions.

Solution. (a) Using
[ < te-apr M=swls,

/cbm/ab|f|'=/:f|g<ca>M<g,

for all ¢, |c — a| < /M. Therefore,

i [n= [,

for e > 0,
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(b) For € > 0, fix ¢ € (a,b) such that

[ i<z,

The function f is integrable on [c,b] and Riemann-Lebesgue Lemma applies to get

/cb f(z)emdx

€
<§, n > ng,

for some ng. It follows that

/abf(x)emdx < /:|f| +

. Optional. Show that

<e, VYn>ng.

/c b f(z)e™dx

cos 2x n cos 3x
2 3

—10g’2sin§‘ ~ cosT +

Suggestion. I leave it to you to verify this function is 27-periodic and improperly inte-
grable. The calculation of ag is tricky, involving the definite integral I = foﬂ/ 2 log sin tdt.
To evaluate it use sint = 2sint/2cost/2 and eventually show I = —7 log 2.

Solution. I leave out the verification of periodicity and improper integrability. This is
an even function, so its Fourier series is a cosine series. Let

T x T x
Tay = / log (2 sin 5) dr =mlog2+Y, Y = / log sin §dx.
0 0

We have
w/2
Y = 2/ log sin tdt
0
= 2 2sin - cos - | dt
/0 og( sm2cos2>
7T/2 t 7T/2 t
= 7rlog2+2/ log sin dt+2/ log cos —dt
0 2 0 2
7T/2 t ™ t
= 7rlog2+2/ logsindt+2/ log sin —dt
0 2 /2 2
= mwlog2+2Y,
so Y = —wlog2. It follows that ag = 0. The calculations for a, make use of by parts to
get

1 [™si 2

0 = L sin nz cos(z/ )dm
nw Jo sin(z/2)

first, then by

i ? ~ I (sin(n + D)z +sin(n - 1)
SN T COS — = — Sin(n — )T simmin — — )&
2 2 2 2

and finally use Property 3 of the Dirichlet kernel.

4. Let ay, b, be the Fourier coefficients of some f € Ra,.
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(a) Show that for each r € [0, 1), the trigonometric series given by
oo
ag + Z r"(ay, cosnz + by, sinnx)
k=1

is uniformly convergent to some function in Cy,. Denote this function by f,.(x).
(b) Show that
1 ™
fr(x) = Py P.(2)f(z + 2)dz,
™ —T
where the Poisson kernel P, is given by
_ 1—r?
1—2rcosz+r?’

(c) Let f be continuous at z. Show that lim, 1 f(z) = f(z).

P.(2)

The treatment is parallel to that for the Dirichlet kernel (the parameter n is now replaced
by r), but differs at the final step; we do not need Lipschitz continuity. Think about it.

Solution. Look up [SS]. We don’t need Lipschitz continuity because Poisson kernel is
positive, so the analog of Property IV of the Dirichlet kernel does not hold, which is good
news.

5. (a) Can you find a cosine series which converges uniformly to the sine function on [0, 7]?
If yes, find one.

(b) Is the series in (a) unique?
(c) Can you find a cosine series which converges pointwisely to the sine function on [—a, 7]

where a is a number in (0,7)?

Solution. (a) Yes, extend the sine function on [0,7] to |sinx|, an even, 27-periodic
function. Since it is continuous, piecewise C, its cosine series converges uniformly to this
extended function. In particular, this cosine series converges uniformly to sinz on [0, 7.
(b) Yes, there is only one way to extend sinz as an even function. (¢) No, can’t have even
extension. (When a function is the pointwise limit of an even function, it must be even.)

6. Let f be an integrable function on [—m,7]. Show that for each ¢ > 0, there exists a
trigonometric polynomial p satisfying p < f on [—m, 7| and

/_:rrlf—p|<€-

Solution. Given ¢ > 0, we can find a continuous function g + €1 < f satisfying

b
€
/a’f—9<4

for a small e; > 0. (g comes from modifying a step function constructed using a Dar-
bourx lower sum.) Then we find a trigonometric polynomial ¢ satisfying |g(x) — q(z)| <

min{e;/2,e/4(b—a)}, so
b €
/a lg9—dal < 1

The function p = ¢ + min{e;/2,¢/(4(b — a)} satisfies our requirement.

Note. Weierstrass Theorem asserts every continuous function can be approximated by
polynomials in [a, b]. Here it is shown that every integrable function can be approximated
by polynomials in integral sense (that is, in average sense).
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7. Show that there is a countable subset of C|[a,b] such that for each f € Cla,b], there is
some € > 0 such that || f — g||cc < € for some g in this set. Suggestion: Take this set to be
the collection of all polynomials whose coefficients are rational numbers.

Solution. Let Py the collection of all polynomials of the form p(x) = ap+ar1z+---+ayz™
where a;,j = 0,---, N are rational numbers. The map p — (ag,a1, -+ ,an) is a one-to-
one correspondence between Py and Q, which is countable. As the countable union of
countable sets is again countable, P = U}_,Py is also countable. Now, by Weierstrass
theorem, for each f € [a,b] and £ > 0, there exists a polynomial g (with real coefficients)
such that ||f — ¢l|cc < £/2. We may approximate ¢ by a polynomial p from P such that
lg = plloo- It follows that [|f — plloc < [[f = dlloc + llg — pllec <&

8. Let f be continuous on [a,b] X [¢,d]. Show that for each € > 0, there exists a polynomial
p = p(z,y) so that
Hf —pHOO <e, in[a,b] X [c,d].
In fact, this result holds in arbitrary dimension.

Solution. Just like we approximate a continuous function by continuous piecewise linear
function in the one dimensional case, WLOG we may assume f(z,y) is doubly 27-periodic,
uniformly Lipschitz continuous in [—7,7]2. For every ¢ > 0, we can find an N such that

for all y
N

|f(z,y) — Z(ak(y) coskx + by (y) sinkx| <e, Vx. (1)
k=1

(See the last paragraph.) From the expression
1 ™
@) == [ fz,y)coskedz

—Tr

we see that each ap is in Cy,;. By Weierstrass Approximation Theorem, we can find
polynomials py(z) such that |ax(x) — px(z)| < e/N for all z, and g for by similarly. It
follows that

N
|f(x,y) — Z(pk(:x) cos kx + q(x) sin kz)|

k=1
N
< |f Z x) cos kx + by (z) sin kx)
k=1
N N
Z (ak(z) cos kx + by (x) sin kx) Z ) cos kz + g () sin kx)
k= k=1

— 36-

Finally, we approximate cos kx and sin kxz by polynomials in x to complete the job.

We justify (1) by a compactness argument. For each fixed y, the function z — f(x,y) is
uniformly Lipschitz continuous. For € > 0, there exists some natural number N, depending
on y such that

Ny

|f(z,y) — Z(ak(y) coskx + by (y)sinkz| <e, V.
k=1
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By continuity, there is some interval (y — d,, y + d,) so that

Ny
|f(z,2) — Z(ak(z) coskx + by(z)sinkz| <e, Vz, and z € (y—0dy,y+9,) .
k=1

All these intervals {(y — dy,y + d,)},y € [—m, 7], form an open covering of [—m,7]. By
Open Covering Theorem (I taught it in MATH2050 many years ago. Supposedly it is still
covered in this course. I will teach this course again in the coming semester. Definitely I
will teach it), we can find a finite subcover {(yi — dy,,yr + 0y, )}, k=1,---, M. Then (1)
holds by taking N = max{Ny,,---, Ny, }.



